Thursday, 31 July 2014

Big Data Basics - Part 2 - Overview of Big Data Architecture

Big Data Basics - Part 2 - Overview of Big Data Architecture

Problem

I read the tip on Introduction to Big Data and would like to know more about how Big Data architecture looks in an enterprise, what are the scenarios in which Big Data technologies are useful, and any other relevant information.

Solution

In this tip, let us take a look at the architecture of a modern data processing and management system involving a Big Data ecosystem, a few use cases of Big Data, and also some of the common reasons for the increasing adoption of Big Data technologies.

Architecture

Before we look into the architecture of Big Data, let us take a look at a high level architecture of a traditional data processing management system. It looks as shown below.

Traditional Data Processing and Management Architecture

As we can see in the above architecture, mostly structured data is involved and is used for Reporting and Analytics purposes. Although there are one or more unstructured sources involved, often those contribute to a very small portion of the overall data and hence are not represented in the above diagram for simplicity. However, in the case of Big Data architecture, there are various sources involved, each of which is comes in at different intervals, in different formats, and in different volumes. Below is a high level architecture of an enterprise data management system with a Big Data engine.

Big Data Processing and Management Architecture
Let us take a look at various components of this modern architecture.

Source Systems

As discussed in the previous tip, there are various different sources of Big Data including Enterprise Data, Social Media Data, Activity Generated Data, Public Data, Data Archives, Archived Files, and other Structured or Unstructured sources.

Transactional Systems

In an enterprise, there are usually one or more Transactional/OLTP systems which act as the backend databases for the enterprise's mission critical applications. These constitute the transactional systems represented above.

Data Archive

Data Archive is collection of data which includes the data archived from the transactional systems in compliance with an organization's data retention and data governance policies, and aggregated data (which is less likely to be needed in the near future) from a Big Data engine etc.

ODS

Operational Data Store is a consolidated set of data from various transactional systems. This acts as a staging data hub and can be used by a Big Data Engine as well as for feeding the data into Data Warehouse, Business Intelligence, and Analytical systems.

Big Data Engine

This is the heart of modern (Next-Generation / Big Data) data processing and management system architecture. This engine capable of processing large volumes of data ranging from a few Megabytes to hundreds of Terabytes or even Petabytes of data of different varieties, structured or unstructured, coming in at different speeds and/or intervals. This engine consists primarily of a Hadoop framework, which allows distributed processing of large heterogeneous data sets across clusters of computers. This framework consists of two main components, namely HDFS and MapReduce. We will take a closer look at this framework and its components in the next and subsequent tips.

Big Data Use Cases

Big Data technologies can solve the business problems in a wide range of industries. Below are a few use cases.
  • Banking and Financial Services
    • Fraud Detection to detect the possible fraud or suspicious transactions in Accounts, Credit Cards, Debit Cards, and Insurance etc.
  • Retail
    • Targeting customers with different discounts, coupons, and promotions etc. based on demographic data like gender, age group, location, occupation, dietary habits, buying patterns, and other information which can be useful to differentiate/categorize the customers.
  • Marketing
    • Specifically outbound marketing can make use of customer demographic information like gender, age group, location, occupation, and dietary habits, customer interests/preferences usually expressed in the form of comments/feedback and on social media networks.
    • Customer's communication preferences can be identified from various sources like polls, reviews, comments/feedback, and social media etc. and can be used to target customers via different channels like SMS, Email, Online Stores, Mobile Applications, and Retail Stores etc.
  • Sentiment Analysis
    • Organizations use the data from social media sites like Facebook, Twitter etc. to understand what customers are saying about the company, its products, and services. This type of analysis is also performed to understand which companies, brands, services, or technologies people are talking about.
  • Customer Service
    • IT Services and BPO companies analyze the call records/logs to gain insights into customer complaints and feedback, call center executive response/ability to resolve the ticket, and to improve the overall quality of service.
    • Call center data from telecommunications industries can be used to analyze the call records/logs and optimize the price, and calling, messaging, and data plans etc.
Apart from these, Big Data technologies/solutions can solve the business problems in other industries like Healthcare, Automobile, Aeronautical, Gaming, and Manufacturing etc.

Big Data Adoption

Data has always been there and is growing at a rapid pace. One question being asked quite often is "Why are organizations taking interest in the silos of data, which otherwise was not utilized effectively in the past, and embracing Big Data technologies today?". The reason for adoption of Big Data technologies is due to various factors including the following:
  • Cost Factors
    • Availability of Commodity Hardware
    • Availability of Open Source Operating Systems
    • Availability of Cheaper Storage
    • Availability of Open Source Tools/Software
  • Business Factors
    • There is lot of data being generated outside the enterprise and organizations are compelled to consume that data to stay ahead of the competition. Often organizations are interested in a subset of this large volume of data.
    • The volume of structured and unstructured data being generated in the enterprise is very large and cannot be effectively handled using the traditional data management and processing tools.
References
Next Steps
  • Explore more Big Data use cases
  • Stay tuned for next tips in this series to learn more about Big Data ecosystem

 

Big Data Basics - Part 1 - Introduction to Big Data

Big Data Basics - Part 1 - Introduction to Big Data

Problem

I have been hearing the term Big Data for a while now and would like to know more about it. Can you explain what this term means, how it evolved, and how we identify Big Data and any other relevant details?

Solution

Big Data has been a buzz word for quite some time now and it is catching popularity faster than pretty much anything else in the technology world. In this tip, let us understand what this buzz word is all about, what is its significance, why you should care about it, and more.

What is Big Data?

Wikipedia defines "Big Data" as a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications.
In simple terms, "Big Data" consists of very large volumes of heterogeneous data that is being generated, often, at high speeds.  These data sets cannot be managed and processed using traditional data management tools and applications at hand.  Big Data requires the use of a new set of tools, applications and frameworks to process and manage the data.

Evolution of Data / Big Data

Data has always been around and there has always been a need for storage, processing, and management of data, since the beginning of human civilization and human societies. However, the amount and type of data captured, stored, processed, and managed depended then and even now on various factors including the necessity felt by humans, available tools/technologies for storage, processing, management, effort/cost, ability to gain insights into the data, make decisions, and so on.
Going back a few centuries, in the ancient days, humans used very primitive ways of capturing/storing data like carving on stones, metal sheets, wood, etc. Then with new inventions and advancements a few centuries in time, humans started capturing the data on paper, cloth, etc. As time progressed, the medium of capturing/storage/management became punching cards followed by magnetic drums, laser disks, floppy disks, magnetic tapes, and finally today we are storing data on various devices like USB Drives, Compact Discs, Hard Drives, etc.
In fact the curiosity to capture, store, and process the data has enabled human beings to pass on knowledge and research from one generation to the next, so that the next generation does not have to re-invent the wheel.
As we can clearly see from this trend, the capacity of data storage has been increasing exponentially, and today with the availability of the cloud infrastructure, potentially one can store unlimited amounts of data. Today Terabytes and Petabytes of data is being generated, captured, processed, stored, and managed.

Characteristics of Big Data - The Three V's of Big Data

When do we say we are dealing with Big Data? For some people 1TB might seem big, for others 10TB might be big, for others 100GB might be big, and something else for others. This term is qualitative and it cannot really be quantified. Hence we identify Big Data by a few characteristics which are specific to Big Data. These characteristics of Big Data are popularly known as Three V's of Big Data.
The three v's of Big Data are Volume, Velocity, and Variety as shown below.
Characteristics of Big Data - The Three V's of Big Data

Volume

Volume refers to the size of data that we are working with. With the advancement of technology and with the invention of social media, the amount of data is growing very rapidly.  This data is spread across different places, in different formats, in large volumes ranging from Gigabytes to Terabytes, Petabytes, and even more. Today, the data is not only generated by humans, but large amounts of data is being generated by machines and it surpasses human generated data. This size aspect of data is referred to as Volume in the Big Data world.

Velocity

Velocity refers to the speed at which the data is being generated. Different applications have different latency requirements and in today's competitive world, decision makers want the necessary data/information in the least amount of time as possible.  Generally, in near real time or real time in certain scenarios. In different fields and different areas of technology, we see data getting generated at different speeds. A few examples include trading/stock exchange data, tweets on Twitter, status updates/likes/shares on Facebook, and many others. This speed aspect of data generation is referred to as Velocity in the Big Data world.

Variety

Variety refers to the different formats in which the data is being generated/stored. Different applications generate/store the data in different formats. In today's world, there are large volumes of unstructured data being generated apart from the structured data getting generated in enterprises. Until the advancements in Big Data technologies, the industry didn't have any powerful and reliable tools/technologies which can work with such voluminous unstructured data that we see today. In today's world, organizations not only need to rely on the structured data from enterprise databases/warehouses, they are also forced to consume lots of data that is being generated both inside and outside of the enterprise like clickstream data, social media, etc. to stay competitive. Apart from the traditional flat files, spreadsheets, relational databases etc., we have a lot of unstructured data stored in the form of images, audio files, video files, web logs, sensor data, and many others. This aspect of varied data formats is referred to as Variety in the Big Data world.

Sources of Big Data

Just like the data storage formats have evolved, the sources of data have also evolved and are ever expanding.  There is a need for storing the data into a wide variety of formats. With the evolution and advancement of technology, the amount of data that is being generated is ever increasing. Sources of Big Data can be broadly classified into six different categories as shown below.
Sources of Big Data

Enterprise Data

There are large volumes of data in enterprises in different formats. Common formats include flat files, emails, Word documents, spreadsheets, presentations, HTML pages/documents, pdf documents, XMLs, legacy formats, etc. This data that is spread across the organization in different formats is referred to as Enterprise Data.

Transactional Data

Every enterprise has some kind of applications which involve performing different kinds of transactions like Web Applications, Mobile Applications, CRM Systems, and many more. To support the transactions in these applications, there are usually one or more relational databases as a backend infrastructure. This is mostly structured data and is referred to as Transactional Data.

Social Media

This is self-explanatory. There is a large amount of data getting generated on social networks like Twitter, Facebook, etc. The social networks usually involve mostly unstructured data formats which includes text, images, audio, videos, etc. This category of data source is referred to as Social Media.

Activity Generated

There is a large amount of data being generated by machines which surpasses the data volume generated by humans. These include data from medical devices, censor data, surveillance videos, satellites, cell phone towers, industrial machinery, and other data generated mostly by machines. These types of data are referred to as Activity Generated data.

Public Data

This data includes data that is publicly available like data published by governments, research data published by research institutes, data from weather and meteorological departments, census data, Wikipedia, sample open source data feeds, and other data which is freely available to the public. This type of publicly accessible data is referred to as Public Data.

Archives

Organizations archive a lot of data which is either not required anymore or is very rarely required. In today's world, with hardware getting cheaper, no organization wants to discard any data, they want to capture and store as much data as possible. Other data that is archived includes scanned documents, scanned copies of agreements, records of ex-employees/completed projects, banking transactions older than the compliance regulations.  This type of data, which is less frequently accessed, is referred to as Archive Data.

Formats of Data

Data exists in multiple different formats and the data formats can be broadly classified into two categories - Structured Data and Unstructured Data.
Structured data refers to the data which has a pre-defined data model/schema/structure and is often either relational in nature or is closely resembling a relational model. Structured data can be easily managed and consumed using the traditional tools/techniques. Unstructured data on the other hand is the data which does not have a well-defined data model or does not fit well into the relational world.
Structured data includes data in the relational databases, data from CRM systems, XML files etc. Unstructured data includes flat files, spreadsheets, Word documents, emails, images, audio files, video files, feeds, PDF files, scanned documents, etc.

Big Data Statistics

  • 100 Terabytes of data is uploaded to Facebook every day
  • Facebook Stores, Processes, and Analyzes more than 30 Petabytes of user generated data
  • Twitter generates 12 Terabytes of data every day
  • LinkedIn processes and mines Petabytes of user data to power the "People You May Know" feature
  • YouTube users upload 48 hours of new video content every minute of the day
  • Decoding of the human genome used to take 10 years. Now it can be done in 7 days
  • 500+ new websites are created every minute of the day
Source: Wikibon - A Comprehensive List of Big Data Statistics
In this tip we were introduced to Big Data, how it evolved, what are its primary characteristics, what are the sources of data, and a few statistics showing how large volumes of heterogeneous data is being generated at different speeds.
References
Next Steps
  • Explore more about Big Data.  Do some of your own searches to see what you can find.
  • Stay tuned for future tips in this series to learn more about the Big Data ecosystem.

 

Related Posts Plugin for WordPress, Blogger...